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The present paper deals with an analysis of the combined effect of Joule heating and viscous dissipation on an 
MHD boundary layer flow and melting heat transfer of a micro polar fluid over a stretching surface. Governing 
equations of the problem are transformed into a set of coupled nonlinear ordinary differential equations by 
applying proper transformations and then they are solved numerically using the RKF-45 method. The method is 
verified by a comparison with the established results with limiting solution. The influence of the various 
interesting parameters on the flow and heat transfer is analyzed in detail through plotted graphs.  
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1. Introduction 

 
Melting heat transfer effect has received much attention in recent years because of its important 

applications such as liquid polymer extrusion, frozen ground thawing, permafrost melting, casting and 
welding processes as well as phase change material, hot extrusion, polymers, ceramics and others is pushed 
or drawn through a die of the desired cross-section to produce different types of objects. Roberts [1] was the 
first to describe the steady melting of a body of ice which presents a plane surface transverse to a stream of 
hot air. Tien and Yen [2] studied the effect of melting on convective heat transfer between a melting body 
and surrounding fluid. Gorla et al. [3] studied the melting heat transfer in a mixed convection flow over a 
vertical plate. Meanwhile, the effect of melting heat transfer has been examined in several studies mentioned 
in [4]-[7] which involve flows of fluid over different geometry.  

At present it is accepted that most of the fluids in industry and engineering are non-Newtonian in 
nature. The micropolar fluid model is a non-Newtonian fluid model which is adequate for exotic lubricants, 
animal blood, liquid crystals with rigid molecules, and certain biological fluids and colloidal or suspensions 
solutions. Eringen [8] was first who investigated micropolar fluids. This investigation shows that micro 
rotation effects as well as micro inertia have great potential for the discussion of flows of colloidal fluids, 
liquids crystal, polymeric suspension, and blood. Heruska et al. [9] studied the flow of an incompressible and 
constant density micropolar fluid past a porous stretching sheet and this study also extends the recent work of 
[10]-[17] to examine different non-Newtonian fluids. 
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In recent years many researchers have examined a dusty fluid flow due to its wide range of 
applications such as fluidization, centrifugal separation of matter from fluid, purification of crude oil, dust 
collection, petroleum industry, powder technology, nuclear reactor cooling, performance of solid fuel rocket 
nozzles and paint spraying etc. Saffman [18] analyzed the flow of a dusty gas in which suspension particles 
are uniformly distributed. Further, Datta and Mishra [19] presented a boundary layer flow of a dusty fluid 
over a semi-infinite flat plate along with the drag force. Vajravelu and Nayfeh [20] analyzed a 
hydromagnetic flow of a dusty fluid over a stretching sheet with the effect of suction. Some more interrelated 
studies on nanofluids can be seen in [21-28]. 

The objective of this work is to analyze the effect of melting heat transfer of a micropolar dusty fluid 
over a stretching surface in the presence of Joule heating and viscous dissipation. Using suitable similarity 
transformations, the governing partial differential equations are reduced into a set of non-linear ordinary 
differential equations, and then they are solved numerically.  

 
2. Mathematical formulation 

 
Consider a steady boundary layer flow and heat transfer of a micropolar fluid towards a stretching 

sheet melting at a steady rate into a constant property warm liquid of the same material. The velocity of the 
stretching sheet is  wu x bx , where b  is a constant and x  is the coordinate measured along the stretching 

sheet. It is also assumed that the temperature of the melting surface is mT , while the temperature in the free-

stream condition is   T , where   mT T  . 
Governing equations after applying the boundary layer approximations are given by; 
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The boundary conditions are 
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where   E is latent heat of the fluid and sC  is heat capacity of the solid surface, heat conducted to melting 

surface is equal to heat of melting plus the sensible heat required to raise the solid temperature 0T  to its 

melting temperature mT . 
 The following similarity transformations are introduced for the current problem 
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     being the temperature ratio parameter.  

 In view of (2.9), Eqs (2.1)-(2.7) are reduced as follows;  
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 The physical quantities of interest are the skin friction coefficient fC  and the local Nusselt number 

 Nu x , which are defined as 
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where the shear stress  w  and surface heat flux  wq  are given by, 
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3. Result and discussion 

 
The set of similarity equalities (2.10) to (2.14) with boundary conditions (2.15) are highly coupled 

nonlinear differential equations and are difficult to solve analytically. So we seek for a numerical solution 
using the RKF-45 method. Table 1 shows the comparison of ''( )f 0  with the results reported by Akbar et al. 
[16] and Fathizadeh et al. [28], which show an excellent agreement. This confirms that the numerical results 
obtained are accurate. The numerical results for the local skin-friction coefficient and local Nusselt number 
are presented for different values of governing parameters in Tabs 2 and 3, respectively. 
 
Table 1. Comparison of  f 0  with the results by Akbar et al. [16] and Fathizadeh et al. [28], ( )K 0  for 

different values of M . 
 

 M  Akbar et al. [16] Fathizadeh et al. [28] Present result 

1 -1.41421 -1.41421 -1.41421 

5 -2.44948 -2.44948 -2.44949 

10 -3.31662 -3.31662 -3.31662 

50 -7.14142 -7.14142 -7.14143 

500 -22.3830 -22.3830 -22.38302 

1000 -31.6386 -31.6386 -31.63858 
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Table 2.  Numerical values of     , ( )1 1 m K f 0 0         and ( )h 0  for different values of 

, , ,  ,   K M Q m and v . 
 

  K  M  Q  v  l  m     1 1 m K f 0      ( )0  ( )h 0  

1       -1.3826 2.0700 0.1718 

2       -1.3803 2.1803 0.1709 

3       -1.3781 2.2863 0.1702 

 0      -1.1963 1.9944 0.3061 

 0.5      -1.3843 1.9901 0.1724 

 1      -1.2284 1.9685 0.0945 

  0     -1.7963 2.3134 0.1876 

  1     -1.3528 1.7587 0.1614 

  2     -1.3075 1.4440 0.1464 

   1    -1.5955 2.0167 0.2260 

   2    -1.9503 2.0079 0.2908 

   3    -2.2495 1.9709 0.3468 

    1   -1.2979 1.9635 0.9614 

    2   -1.3054 1.9600 0.1750 

    3   -1.3090 1.9583 0.1756 

     0  -1.2750 1.9266 0.1699 

     0.2  -1.3052 2.0068 0.1748 

     0.4  -1.3346 2.0838 0.1796 

      0.2 -1.3122 1.9652 0.1493 

      0.4 -1.2674 1.9694 0.3003 

      0.6 -1.2188 1.9755 0.5696 
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Table 3. Numerical values of ( )0  for different values of Ec,  Pr, Q  and t . 
 

 Ec  Pr  t  ( )0  

0   1.9897 
1   2.0331 
2   2.0764 

 2  1.6695 
 3  1.9901 
 4  3.7357 
  0 1.9319 
  0.5 1.9644 
  1 1.9740 

 
Figure 1 shows the behavior of ( )h   for higher values of the magnetic parameter  Q . As expected, 

the angular velocity profile and the corresponding boundary layer thickness increase for increasing values of
  Q . Figure 2 depicts the effect of Q  on the dimensionless '( )f   and ( )F  , respectively. It is explicit that 

'( )f   and ( )F   reduce with growing values of Q . It means that an application of a magnetic field normal 
to the flow of an electrically conducting fluid gives rise to a resistive force that acts in the direction opposite 
to that of the flow. This resistive force tends to slow down the motion of the fluid along the plate and causes 
a decrease in its velocity due to the buoyancy opposing flow.  
 

 
 

Fig.1. Angular velocity profile for different values of Q . 
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Fig.2. Velocity profile for different values of Q . 
 

Figure 3 exemplifies the influence of the melting parameter M  on '( )f  . An increase in M  
enhances the velocity of both the fluid and dust phases and also the boundary layer thickness . Thus the sheet 
gradually transforms to a liquid causing the velocity profiles to grow rapidly. The effect of M on the 
temperature profile is captured in Fig.4; one can observe from this figure that the temperature profile 
decreases for increasing values of  M . Figure 5 represents the effect of M on the angular velocity profile. It 
is observed that larger values of M  reduce ( )h  .   
 

 
 

Fig.3. Angular velocity profile for different values of M . 
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Fig.4. Temperature profile for different values of M . 
 

 
 

Fig.5. Angular velocity profile for different values of M . 
 

Figure 6 depicts the effect of the material parameter K  on the velocity profile. The velocity profile 
of the both dust and fluid phase increases for growing values of K . Figure 7 shows the effect of K  on a 
 ( )h  . A growing values of K  increases the angular velocity profile. Figure 8 presents the effects of m  on 
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the velocity profile. From this plot, it is observed that larger values of m  reduce the velocity profile as well 
as the momentum boundary layer thickness. Figure 9 shows the effect of m  on ( )h   and it reveals that ( )h   
increases as  m  increases.  
 

 
 

Fig.6. Velocity profile for different values of K . 
 

 
 

Fig.7. Angular velocity profile for different values of K . 



438  K.G.Kumar, B.J.Gireesha and S.Manjunatha 

 
 

Fig.8. Velocity profile for different values of m . 
 

 
 

Fig.9. Angular velocity profile for different values of m . 
 
  Figure 10 illustrates the effect of the Prandtl number  Pr  on the temperature profile. In the presence 

of the melting parameter, the temperature profile for the both fluid and dust phase increases for increasing 
values of Pr. On the other hand, an expected result was obtained for the influence of the specific heat ratio 
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( )  for both the fluid and dust phase of the temperature profile as shown in Fig.11. From this figure, it 
follows that an increase in the specific heat ratio parameter increases the temperature profile and thermal 
boundary layer thickness rapidly. Figure 12 depicts the effect of the Eckert number Ec on the dimensionless 

( )   and ( )p  . This figure reveals that the effect of increasing values of Ec is to increase temperature 

distribution of both the fluid and dust phase in the flow region. 
 

 
 

Fig.10. Temperature profile for different values of Pr. 
 

 
 

Fig.11. Temperature profile for different values of  . 
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Fig.12. Temperature profile for different values of Ec. 
 

4. Conclusion 
  
 This study shows the effect of Joule heating and viscous dissipation on an MHD boundary layer flow 

and melting heat transfer of a micropolar fluid over a stretching surface with fluid particles suspension. Some 
important features regarding the effect of different physical parameters on flow fields are reported. The main 
results of the problem are summarized as follows: 
o The momentum boundary layer thickness reduces due to the influence of the Lorentz force. 
o A larger value of Q  and K  leads to an increase in the momentum boundary layer thickness which 

reduces the velocity and temperature of the fluid. 
o Increasing values of the melting parameter increase the momentum boundary layer thickness and reduce 

the thermal boundary layer thickness.  
o Temperature profile enhances for increasing values of Pr. 
o The rate of hear transfer increases for increasing values of .   
o Both the fluid and dusty phase temperature increases for increasing values of Ec. 

 
Nomenclature 
 

 2
0B   magnetic field 

 b  stretching rate 
 fC   skin friction coefficient 

 mc   dust phase specific heat coefficient ( / )J kgK  

 pc   fluid phase specific heat coefficient ( / )J kgK  

 
 f mc T T 


  Stefan number for the liquid phase 

 
 s m 0c T T


  Stefan number for the solid phases 

 Ec  Eckert number 
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 F  dimensionless velocity of the dust phase 
 f  dimensionless velocity of the fluid phase 
 h  dimensionless angular velocity  
 K  material parameter 

 *K   Stokes drag constant 

 *k   mean absorption coefficient ( /  )W mK  

 l   mass concentration of dust particles parameter 
 M  dimensionless melting parameter 
 m  boundary parameter 

 *m   mass of dust particles 
 N  micro-rotation or angular velocity 

 *N   dust particles number density 
 Nux   local Nusselt number 

 Pr  Prandtl number 
 Rex   local Reynolds number 

 r   radius of dust particles 
 Shx   Sherwood number 

 T  temperature of the fluid phase ( )K  

 mT   temperature of the melting surface ( )K  

 pT   temperature of the dust phase ( )K  

 T   ambient fluid temperature ( )K  

 , pu u   velocity components of fluid phase  1m s  

 wu   stretching sheet velocity  1m s  

 Q  magnetic parameter 
 wq   heat flux at the surface 

 , pv v   velocity components of dust phase  1m s  

 x  coordinate along the plate ( )m  

 y  coordinate normal to the plate ( )m  

 t   fluid-particle interaction parameter  

 v   fluid-particle interaction parameter for  velocity 

    specific heat ratio 

    similarity variable 

    dimensional fluid phase temperature  
 p   dimensional dust phase temperature 

    temperature dynamic viscosity   1 1kg m s   

    kinematic viscosity  2 1m s  

    base fluid density  / 3kg m  

 p   dust particles density  / 3kg m  

    electrical conductivity of the fluid   

 *   Stefan-Boltzmann constant   2 4W m K   

 T   thermal equilibrium time 

 w   surface shear stress 
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 v   dust particles relaxation time 

 
Superscript 
 
 '   derivative with respect to   
 
Subscript 
 
 p   particle phase 

    fluid properties at ambient condition 
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